Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.
نویسندگان
چکیده
INTRODUCTION Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. METHODS Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. RESULTS Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. CONCLUSIONS Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs.
منابع مشابه
Comparison of Propolis and Calcium Hydroxide in terms of Mineralization and Cytotoxicity Using Dental Pulp Stem Cells
Objectives: This study aimed to compare the in vitro cytotoxic activity of propolis, a bioactive material made by the honeybee, and calcium hydroxide (CH) and their effect on formation of mineralized nodules by human dental pulp stem cells (HDPSCs). Methods: In this in vitro study, HDPSCs were obtained from the Cellular and Molecular Oral Biology Laboratory of School of Dentistry, Shahid Behesh...
متن کاملCyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway.
Physical stimuli play critical roles in the development, regeneration, and pathology of many mesenchymal tissues, most notably bone. While mature bone cells, such as osteoblasts and osteocytes, are clearly involved in these processes, the role of their progenitors in mechanically mediated tissue responses is unknown. In this study, we investigated the effect of cyclic substrate deformation on t...
متن کاملThe effect of different pulp-capping materials on proliferation, migration and cytokine secretion of human dental pulp stem cells
Objective(s): Biocompatibility of dental biomaterials plays a critical role in regeneration of dental stem cells. The aim of present study was to evaluate the effects of novel biomaterials of TheraCal-LC (TheraCal; Bisco), Angelus mineral trioxide aggregate (MTA; Angelus), calcium-enriched mixture (CEM; BioniqueDent), and Biodentine (Septodont) on viability of human de...
متن کاملDental stem cell therapy with calcium hydroxide in dental pulp capping.
Calcium hydroxide has been extensively and steadily used for direct pulp capping in modern clinical dentistry. As it was known to have potential to induce hard tissue repair, this chemical has been applied to the exposed dental pulp and the hard tissue is expected to be regenerated above the pulp. During the reparative process of exposed pulp, primary odontoblasts that were lost as a result of ...
متن کاملBone Morphogenetic Protein-9 Induces Osteogenic Differentiation of Rat Dental Follicle Stem Cells in P38 and ERK1/2 MAPK Dependent Manner
Dental follicle stem cells are a group of cells possessing osteogenic, adipogenetic and neurogenic differentiations, but the specific mechanism underlying the multilineage differentiation remains still unclear. Great attention has been paid to bone morphogenetic protein-9 (BMP-9) due to its potent osteogenic activity. In the present study, rat dental follicle stem cells were isolated and purifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of endodontics
دوره 42 9 شماره
صفحات -
تاریخ انتشار 2016